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sional Forecasters. The uncertainty curve is more linear than the disagree-
ment curve. We document heterogeneity across forecasters in the level and
the term structure of uncertainty, and show that the difference between long-
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Heightened uncertainty in the Great Recession has
prompted renewed efforts to investigate the sources and consequences of uncer-
tainty (Bloom 2009, Leduc and Liu 2016, Kozeniauskas, Orlik, and Veldkamp 2018).
Survey forecasts provide valuable information about the expectation formation pro-
cess and the associated subjective uncertainty (Coibion and Gorodnichenko 2012,
Ben-David, Graham, and Harvey 2013).
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In this paper, we construct measures of individual forecasters’ subjective uncer-
tainty at horizons ranging from 1 to 5 years, using density (histogram) forecasts
from the European Central Bank’s Survey of Professional Forecasters (ECB SPF).
Uncertainty refers to the spread (e.g., variance) of an individual agent’s probability
distribution about an outcome. We also construct measures of disagreement, or dis-
persion of expectations across forecasters, at each horizon. We explore the properties
of uncertainty and disagreement over shorter and longer horizons, documenting four
stylized facts.
First, the term structure of uncertainty is highly linear—that is, uncertainty at

the 1- and 2-year horizons can almost perfectly predict uncertainty at the 5-year
horizon. This is true for both aggregate uncertainty and at the individual forecaster
level.
Second, the slope of the term structure of uncertainty is time-varying. We con-

firm that uncertainty is countercyclical, but also show that the slope is procyclical. In
recessions, short-run uncertainty rises significantly more than long-run uncertainty.
Third, forecasters are overconfident at all horizons, in the sense that ex post uncer-

tainty is higher than ex ante uncertainty. For unemployment, the forecasters are most
overconfident at the longest horizon.
Fourth, we document substantial heterogeneity across forecasters in both the level

and term structure of uncertainty. While average uncertainty increases with forecast
horizon, a sizeableminority of forecasters have higher uncertainty at shorter horizons.
This heterogeneity is persistent. That is, particular forecasters tend to have particu-
larly wide or narrow (or even inverted) term structures of uncertainty.
Guided by our stylized facts, we model forecasters’ signal extraction process under

an information structure with private and public channels of information. We adopt
the framework of Baker, McElroy, and Sheng (2020) that features Kalman filter up-
dating and state-dependent information processing.We generalize their framework by
allowing for time-varying uncertainty in both the signal and the noise and by study-
ing uncertainty and disagreement across multiple forecast horizons. The interplay
between signal and noise that is metrized through signal-to-noise ratio (SNR) plays
an essential role in establishing the last three stylized facts. The sticky information
model à la Mankiw and Reis (2002) cannot explain the linear term structure of un-
certainty. Classical noisy information model à la Sims (2003) can account for this
linearity, but cannot explain the procyclical term structure of uncertainty. While a ba-
sic VAR model alone can also explain this linearity, it cannot account for the other
empirically observed phenomena.
Our theory emphasizes that perceived persistence is the key to understandingmulti-

step ahead expectation formation. When the signal is perceived as being more persis-
tent, the term structure of uncertainty takes on an increasingly linear pattern. For the
less persistent signal, uncertainty increases at all horizons, but the increase is sharper
at shorter horizons, leading to a procyclical term structure. This result supports
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intrinsic expectations persistence in Fuhrer (2017, 2018).1 Perceived variability also
plays an important role. When the perceived noise variability is substantially lower
than the actual noise variability, agents lower their forecast uncertainty uniformly
across horizons, resulting in overconfidence. In contrast, when the signal variabil-
ity is perceived by some agents to be higher at shorter horizons, but lower at longer
horizons, the regular ordering of uncertainty might be inverted across horizons for
these agents.
Our paper contributes to several strands of a broad literature using survey data to

study expectations formation, information frictions, and uncertainty (Mankiw, Reis,
and Wolfers 2004, Armantier et al. 2015, Coibion and Gorodnichenko 2015, Abel
et al. 2016, Kozeniauskas, Orlik, and Veldkamp 2018). A subset of this literature
makes use of the multiple-horizon forecasts that are available from some surveys
to extract additional information (Andrade et al. 2016, Binder 2018). For example,
Aruoba (2020) combines inflation forecasts at various horizons from several surveys
to obtain a term structure of inflation expectations, and combines this with nominal
interest data to obtain a term structure of ex ante real interest rates.
Several papers examine disagreement at various forecast horizons. Lahiri and

Sheng (2008) use multihorizon data to estimate the relative importance of three com-
ponents of disagreement: (i) differences in prior beliefs, (ii) different weights attached
on priors, and (iii) differential interpretation of public information. In a similar vein,
Patton and Timmermann (2010) show that the term structure of disagreement can be
used to determine the relative importance of differences in priors versus differences
in private information. Andrade and Le-Bihan (2013) emphasize two sources of het-
erogeneity: inattention and noisy signals, while Giacomini, Skreta, and Turén (2020)
find that in normal times heterogeneous priors and inattention are enough to generate
persistent disagreement, but not during the crisis.
Other papers examine uncertainty at multiple horizons. Inflation uncertainty at dif-

ferent horizons is of particular interest to monetary policymakers. Ball and Cecchetti
(1990) find that the level of inflation has a stronger effect on the variance of permanent
than of temporary shocks, and therefore has a greater effect on longer horizon than
on shorter-horizon inflation uncertainty. These authors do not use a direct measure of
inflation uncertainty, but rather use inflation variability as a proxy. Using data from
the Michigan Survey of Consumers, Binder (2017) constructs an index of consumer
inflation uncertainty and documents that the uncertainty was higher for the longer
than shorter horizon until the mid-1990s. Since then, longer-run inflation uncertainty
declined more than shorter-run uncertainty, inverting the term structure.
Barrero, Bloom, and Wright (2017) study uncertainty at short and long horizons

using firm and macro implied volatility as proxies for uncertainty. As with our un-
certainty measures, the term structure of implied volatility is linear, so they fo-
cus on just the 30-day and 1-year horizons as proxies for short-run and long-run

1. Fuhrer (2017) shows that intrinsic persistence in expectations, rather than price indexation or habit
formation, is a key source of macro-economic persistence. Fuhrer (2018) further explores how expectations
might exhibit such inertia and finds that agents smooth their expectations’ response to news.
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uncertainty. They show that long-run uncertainty is more strongly associated with
economic policy uncertainty, and that R&D is relatively more sensitive to long-run
uncertainty than investment. Berger, Dew-Becker, and Giglio (2020) study whether
realized volatility or implied volatility are associated with contractionary movements
in macro variables, finding that implied volatility has difficulty in explaining contrac-
tions after controlling for realized volatility. Clark, McCracken, and Mertens (2020)
estimate uncertainty from survey forecast errors at multiple horizons and find that
uncertainty measures move together strongly across forecast horizons. Breitung and
Knüppel (2018) examine forecast error variance across horizons using Consensus
Economics survey data, and show that forecast error variance at longer horizons is
often as large as the unconditional variance of the target variable, indicating that these
longer-horizon forecasts are minimally informative.
We differ from these papers in the measures of uncertainty and the horizons that we

examine, and in simultaneously examining the term structures of both uncertainty and
disagreement. Instead of implied volatility for firms or various proxies for uncertainty,
such as ex post accuracy, we directly measure forecasters’ ex ante subjective uncer-
tainty about three key macro-economic variables, at horizons up to 5 years. A benefit
of looking at these longer horizons is that they correspond to the horizons over which
some macro-economic policies may take effect, and also the horizons that firms may
use when evaluating investment projects. Taking advantage of the panel data struc-
ture, we examine and model the uncertainty, disagreement, and heterogeneity in the
term structure of uncertainty for forecasters who are making forecasts of the same
variables over time.
The paper proceeds as follows. Section 1 describes the ECB’s density forecast data

set. We establish four new stylized facts about forecast uncertainty at varying hori-
zons in Section 2. In Section 3, we propose a theory of expectation updating and il-
lustrate the model implications through simulations. Section 4 concludes. Additional
estimation results and technical proofs are relegated to an appendix.

1. DATA AND MEASUREMENT OF UNCERTAINTY

The ECB has conducted the Survey of Professional Forecasters (SPF) since 1999.
Each quarter, approximately 60 forecasters provide point and density forecasts for
inflation (π ), GDP growth (g), and unemployment (u) over several horizons. Density
forecasts take the form of histograms; the forecaster assigns probabilities, summing to
100%, that the realizationwill fall in each bin.2 The density forecasts have a consistent

2. Less than half a percent of density forecasts assign 100% probability to a single bin. On other
surveys where respondents are asked to provide the probability of an event, there is often a “seemingly
inappropriate blip” at 50% (Fischhoff and de Bruin 1999). This does not appear to be a problem in the SPF
density forecasts, for which less than 6% of assigned nonzero bin probabilities are 50%. Just under half
of the assigned nonzero bin probabilities are multiples of 10 percentage points, and around a quarter are
other multiples of 5 percentage points.
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bin width of 0.5 percentage points. This is an advantage over the U.S. SPF, for which
the bin width changes over time. The number of bins occasionally changes to try to
ensure that large probabilities are not assigned to the upper and lower intervals, which
are open-ended. Thus, for example, additional lower bins were added for the inflation
and growth density forecasts in 2009.3

We consider forecasts at three horizons that are included on most survey dates: 1-
year, 2-year, and 5-year. The 1- and 2-year forecasts have fixed horizons, where the
fixed 1-year horizon refers to the month (for inflation and unemployment) or quarter
(for growth) 1 year ahead of the latest available observation at the time of the survey.
The fixed 2-year horizon refers to the month or quarter 2 years ahead of the latest
available observation. The 5-year forecasts, unlike the 1- and 2-year forecasts, are
fixed event forecasts. Specifically, for surveys on the third and fourth quarter of the
year, the 5-year horizon refers to five calendar years ahead, while on the first and
second quarter of the year, the 5-year horizon refers to four calendar years ahead.
Given the long time horizon, we assume that these forecasts approximate a 5-year
fixed horizon forecast of the same variable.

1.1 Uncertainty Measurement

We use the density forecasts to construct a measureUx
ith of ex ante, subjective un-

certainty for each forecaster i, variable x, and horizon h in quarter t, defined as the
variance of the density forecast. We estimate the variance and the mean of each fore-
caster’s density forecasts parametrically.4 We fit (via maximum likelihood) a gen-
eralized beta distribution to the density forecast, with supports determined by the
individual forecast values. Liu and Sheng (2019) show that this distributional setting,
which is highly flexible, performs best in terms of goodness of fit in mimicking the
empirical histograms in the data, which can be asymmetric or irregular.5 We also
consider aggregate uncertainty Ūx

th, the average across forecasters ofU
x
ith.

3. In the first quarter of 2009, many forecasters assigned high probability—sometimes even 100%—to
the lowest bin for growth, corresponding to growth rates less than −1%. As a result, measured uncertainty
in this period is artificially low, so we omit 2009Q1 growth uncertainty from subsequent analysis. In the
second quarter, bins for growth rates of less than −6%, −6% to −5.5%, …, −1.5% to −1% were added.

4. As Engelberg, Manski, andWilliams (2009) discuss, the parametric approach imposes assumptions
about the shapes of forecasters’ subjective distributions—in particular, that they are unimodal—but enables
sharper empirical analysis. The assumption of unimodality is not problematic in our setting. Over 85% of
density forecasts have a single bin with maximum probability. In virtually all of the remaining forecasts
with multiple modal bins, the multiple modal bins are adjacent. Thus, we see no evidence of multimodal
distributions. All of our results are robust to using a nonparametric approach, which assumes that the prob-
ability is concentrated at the midpoint of each bin. The correlation coefficients between the parametric and
nonparametric uncertainty estimates are above 0.99. The levels are similar, with the parametric uncertainty
estimates slightly higher.

5. The four distribution settings that Liu and Sheng compare include the normal distribution, as used
by Giordani and Soderlind (2003), the generalized beta distribution with no parameter constraint, the gen-
eralized beta distribution with supports determined by individual forecast values, and a combination of
beta and triangle distributions, as used by Engelberg, Manski, and Williams (2009).
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1.2 Measuring Disagreement and Errors

Let Fx
ith denote forecaster i’s point forecast of variable x for horizon h made at

time t, and let μx
ith denote the mean of her density forecast. Engelberg, Manski, and

Williams (2009) show that for the U.S. SPF, point forecasts are usually close to the
central tendency of density forecasts. Likewise, we find that the correlation between
Fx
ith and μx

ith is around 0.9 with respondents’ point forecasts. See Figure A1 for plots
of Fx

ith against μ
x
ith for each variable and horizon.

DisagreementDx
th is defined as the cross-sectional variance of forecasts for variable

x at horizon h. Note that this could refer to the heterogeneity of point forecasts or
of the density means across forecasters. Since both measures are very similar (with
correlation coefficients around 0.8 or 0.9 depending on variable and horizon), for
consistency with the literature we use the variance of Fx

ith.
We also use the point forecast in defining a respondent’s mean squared error

(MSE). Data on the realization of the variables being forecasted is from Eurostat.
More detailed information on these variables appears in Tables A1 and A2. The fore-
cast error exith is the difference between the actual realization and forecast. The MSE
is sometimes used as a measure of ex post uncertainty or accuracy.

2. STYLIZED FACTS

In this section, we present four stylized facts from our empirical analysis of the
term structures of uncertainty and disagreement.

(1) The term structure of uncertainty in the ECB SPF is highly linear—in particu-
lar, more linear than the term structure of disagreement.

Figure 1 displays estimates of aggregate uncertainty by horizon for inflation,
growth, and unemployment. For all variables, aggregate uncertainty increases with
forecast horizon. A priori, this need not be the case. For example, if the central bank
is highly credible and long-run inflation expectations are firmly anchored at the infla-
tion target, then inflation uncertainty could decrease with forecast horizon (Beechey,
Johannsen, and Levin 2011). Indeed, Binder (2017) shows that respondents to the
Michigan Survey of Consumers had similar long-run and short-run inflation uncer-
tainty until the late 1980s, and that since then, long-horizon uncertainty is lower than
short-horizon uncertainty.
A term structure is linear if the entire curve is well characterized by a level and

slope statistic. We regress aggregate 5-year uncertainty on 1-year uncertainty (the
level) and the difference between 1- and 2-year uncertainty (the slope). Table 1 shows
that aggregate uncertainty at the 5-year horizon is largely explained by the level and
slope statistic, with R2 around 0.9 for each variable.6 Table 2 shows a panel version

6. Regression coefficients are similar pre- and post-2008; the R2 values are slightly lower with shorter
time samples, but still indicative of high linearity. See Table A3. Regression coefficients and R2 values are
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Fig 1. Time Series of Aggregate Uncertainty.

Notes: ECB SPF data. Uncertainty is the variance of a beta distribution fitted to an individual’s density forecast. We take
the average of log uncertainty across forecasters at time t.
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TABLE 1

Regression for Linearity of the Term Structure of Aggregate Uncertainty

(1) (2) (3)
Inflation Growth Unemp

1-year 0.80*** 0.73*** 0.79***
(0.02) (0.03) (0.04)

2-yr minus 1-yr 0.98*** 0.46*** 1.46***
(0.16) (0.12) (0.27)

Constant −0.17*** −0.09* −0.06
(0.04) (0.05) (0.08)

Observations 71 70 71
R2 0.93 0.88 0.90

Notes: Robust, time-clustered standard errors in parentheses. Dependent variable is log uncertainty at 5-year horizon for indicated variable.
***p < 0.01, **p < 0.05, *p < 0.10.

TABLE 2

Panel Regression for Linearity of the Term Structure of Uncertainty

(1) (2) (3) (4) (5) (6)
Inflation Growth Unemp Inflation Growth Unemp

1-year 0.84*** 0.86*** 0.80*** 0.82*** 0.85*** 0.72***
(0.04) (0.03) (0.04) (0.02) (0.02) (0.02)

2-yr minus 1-yr 0.76*** 0.71*** 0.77*** 0.73*** 0.69*** 0.69***
(0.04) (0.05) (0.05) (0.03) (0.03) (0.03)

Constant −0.08 0.01 0.10 0.03 0.14** 0.16*
(0.05) (0.04) (0.07) (0.07) (0.07) (0.09)

Observations 2,483 2,395 2,214 2,483 2,395 2,214
R2 0.76 0.76 0.65 0.76 0.77 0.66
Time FE No No No Yes Yes Yes
Forecaster FE No No No Yes Yes Yes

Notes: Robust, time-clustered standard errors in parentheses. Dependent variable is log uncertainty for forecaster i at 5-year horizon for
indicated variable. ***p < 0.01, **p < 0.05, *p < 0.10.

of this regression, in which the dependent variable is 5-year uncertainty for forecaster
i in quarter t. Columns (1)–(3) do not include time or forecaster fixed effects, while
(4)–(6) do. Again, for all variables, the term structure of uncertainty is highly linear. In
the similar spirit, Barrero, Bloom, and Wright (2017) document that volatility curves
are linear, or in other words, that a regression of long-run implied volatility on short-
run volatility and the difference between short- and medium-run volatility has a high
R2.7

also similar if uncertainty is measured using the interquartile range of the density forecast as in Abel et al.
(2016), rather than the log variance.

7. Clements and Galvao (2017) study fixed-event forecasts in the U.S. SPF with forecasting horizons
ranging from 8- to 1-quarter ahead and focus on aggregate uncertainty averaged both across forecasters
and over time. In contrast, we analyze fixed-horizon forecasts in ECB SPF with horizons of 1-, 2- and
5-year ahead and study the cyclical nature of the term structure, as discussed in the second stylized fact.
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The linearity of the uncertainty term structure is one feature that distinguishes un-
certainty from disagreement. Other differences between uncertainty and disagree-
ment are well-documented; for example, see Abel et al. (2016) and Rossi, Sekh-
posyan, and Soupre (2016), among others. As shown in Figure 2, disagreement also
spikes in the Great Recession, but unlike uncertainty, does not remain elevated. For
unemployment, disagreement increases monotonically with horizon, but the term
structure is often inverted for the other variables. Analogous regressions to those in
Table 1 for disagreement have R2 values of 0.39, 0.14, and 0.40 for inflation, growth,
and unemployment, respectively.8

(2) The difference between long-run and short-run uncertainty is procyclical.

Both the level and term structure of uncertainty display some notable time varia-
tions. Uncertainty is countercyclical, but the slope of the term structure is procyclical.
That is, in periods of low growth, uncertainty rises, but more so at the shorter hori-
zon, so the term structure narrows. The level of uncertainty also rises, and the term
structure narrows, when inflation is far from target. Uncertainty rises when there is
high economic policy uncertainty (as measured by the Economic Policy Uncertainty
Index for Europe from Baker, Bloom, and Davis 2016),9 and the slope is unchanged
or falls.
These patterns appear in the panel regressions with forecaster fixed effects in Ta-

ble 3. For inflation, growth, and unemployment, we regress log uncertainty at the
short and long horizon on growth, the deviation of inflation from target, the EPU,
and forecaster fixed effects. We also regress the difference between 5- and 1-year log
uncertainty and a dummy variable indicating that 5-year uncertainty is greater than
1-year uncertainty, on the same variables. For all variables, uncertainty declines with
growth and increases with |π − 2|, and both effects are greater at the shorter horizon.
Uncertainty increases with the EPU, with similar effects at each horizon. Column 4
shows that the slope decreases with |π − 2|, and for inflation and growth forecasts,
the slope increases with g.
For inflation and growth, more than for unemployment, the difference between 5-

and 1-year log uncertainty is strongly procyclical (see Figure 3). In particular, the
lowest growth rates in the first two quarters of 2009 correspond to the narrowest term
structure of growth uncertainty and the only time when aggregate 1-year growth un-
certainty was greater than aggregate 5-year growth uncertainty. These results clearly

8. If disagreement is instead measured as the interquartile range of forecasts across forecasters, these
R2 values are 0.06, 0.29, and 0.13, again indicating low linearity. The term structure of inflation and growth
disagreement also frequently inverts with the interquartile range measure.

9. The EPU is based on newspaper articles regarding policy uncertainty. Data were downloaded
in April 2018 from http://www.policyuncertainty.com/europe_monthly.html. The newspapers include Le
Monde and Le Figaro for France, Handelsblatt and Frankfurter Allgemeine Zeitung for Germany, Corriere
Della Sera and La Repubblica for Italy, El Mundo and El Pais for Spain, and The Times of London and
Financial Times for the United Kingdom.

http://www.policyuncertainty.com/europe_monthly.html
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Fig 2. Time Series of Forecast Disagreement.

Notes: ECB SPF data. Disagreement is the cross-sectional variance of the point forecasts.
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TABLE 3

Regressions of Level and Slope of Uncertainty on Macro Variables

(1) (2) (3) (4)
1y 5y 5y−1y 5y > 1y

A. Inflation uncertainty
g −0.029*** −0.004 0.020*** 0.012***

(0.005) (0.006) (0.005) (0.005)
|π − 2| 0.119*** 0.073*** −0.037** −0.041***

(0.015) (0.018) (0.015) (0.013)
EPU/100 0.323*** 0.246*** −0.037** 0.001

(0.017) (0.020) (0.017) (0.015)
N 3,424 2,777 2,571 2,571
R2 0.17 0.07 0.02 0.01

B. Growth uncertainty
g −0.055*** −0.017** 0.038*** 0.026***

(0.006) (0.007) (0.006) (0.005)
|π − 2| 0.099*** 0.051*** −0.038** 0.003

(0.016) (0.019) (0.015) (0.013)
EPU/100 0.237*** 0.199*** 0.013 0.024

(0.018) (0.021) (0.018) (0.015)
N 3,422 2,682 2,480 2,480
R2 0.12 0.05 0.03 0.01

C. Unemployment uncertainty
g −0.017*** −0.007 0.004 −0.001

(0.006) (0.007) (0.007) (0.004)
|π − 2| 0.163*** 0.130*** −0.047** 0.004

(0.018) (0.021) (0.020) (0.012)
EPU/100 0.352*** 0.300*** −0.018 −0.051***

(0.020) (0.024) (0.022) (0.014)
N 3,085 2,501 2,256 2,256
R2 0.16 0.09 0.00 0.01

Notes: Robust, standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10. Panel regressions with forecaster fixed effects. In
columns (1) and (2), dependent variable is log uncertainty for the 1- and 5-year horizon, respectively, for inflation, growth, or unemploy-
ment, as indicated. In column (3), dependent variable is the difference between 5- and 1-year log uncertainty. In column (4), dependent
variable is a dummy variable indicating greater uncertainty at 5-year than at 1-year horizon. All regressions include a constant term. EPU is
rescaled (divided by 100) for ease of presenting coefficients.

show that while the level of term structure of uncertainty is countercyclical, its slope
is procyclical.

(3) Forecasters are overconfident at all horizons.

For each density forecast, we use the estimated parameters of the beta distribution
to compute the 2.5th and 97.5th percentiles of the probability distribution. Table 4
shows that for each variable and horizon, substantially less than 95% of realizations
are in this 95% confidence interval. Pooling across variables and horizons, 53% of
realizations are within the 95% confidence interval.10 This is consistent with evidence
of overconfidence as previously documented for the U.S. SPF (Giordani and Soder-

10. Similarly, we also compute 70% confidence intervals and also find that for each variable and hori-
zon, substantially less than 70% of realizations are within the 70% confidence interval. Pooling across
variables and horizons, 36% of realizations are within the 70% confidence interval.
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1 . The slope of growth uncertainty is lnUg
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1 . Real GDP
growth is the growth rate over the past year.

TABLE 4

Forecaster Overconfidence: Share of Realizations in 95% Confidence Interval

Variable Within 95% interval Below 2.5th percentile Above 97.5th percentile

π , 1-yr 0.65 0.15 0.20
π , 2-yr 0.64 0.21 0.15
π , 5-yr 0.56 0.32 0.10
g, 1-yr 0.44 0.30 0.27
g, 2-yr 0.51 0.33 0.15
g, 5-yr 0.61 0.32 0.07
u, 1-yr 0.58 0.19 0.23
u, 2-yr 0.43 0.23 0.34
u, 5-yr 0.37 0.05 0.58
Pooled 0.53 0.23 0.23

Notes: The table shows the share of realizations within the 95% confidence interval for each variable and horizon and for all variables and
horizons pooled. Sample includes the 40 forecasters who make at least 25 density forecasts for each variable at each horizon.

lind 2003), U.S. chief financial officers (Ben-David, Graham, and Harvey 2013), and
in experimental research in psychology (Rabin 1998).
Table 4 also shows the share of realizations above the 97.5 percentile and be-

low the 2.5 percentile for each variable and horizon. Patterns of overconfidence by
horizon differ by variable. For inflation, overconfidence is similar at each horizon.
For growth, overconfidence is somewhat higher at the shorter horizon. The clearest
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pattern is for unemployment, for which overconfidence is highest at the longest hori-
zon. For growth and unemployment, forecasters often erred on the optimistic side:
growth realizations were more frequently below the 2.5 percentile and unemploy-
ment realizations were more frequently above the 97.5 percentile (for inflation there
is more symmetry).11 This may reflect the unexpected duration and severity of the
Great Recession. Overall overconfidence, however, was similar pre- and post-2008.
Forecaster overconfidence means that ex ante and ex post uncertainty differ sub-

stantially. Figure A2 plots mean squared forecast errors for each variable and horizon.
The ex post errors are larger than would be implied by the subjective variances of the
density forecasts. Abel et al. (2016), also using the ECB-SPF data, find very little
correlation between ex ante uncertainty and ex post accuracy.

(4) There is substantial and persistent heterogeneity across forecasters in the term
structure of uncertainty.

Individual forecasters differ in both their level and term structure of uncertainty.
Figure 4 displays the variability of variance across forecasters over time for infla-
tion. We find that heterogeneity of forecast uncertainty is both substantial and time-
varying. See Figures A3 and A4 for analogous results for growth and unemployment.
Notice, for each variable and horizon, that while uncertainty is higher during and af-
ter the recession, this increase comes primarily from the top half of the distribution.
The 10th and 25th percentiles of uncertainty and even the median change relatively
little, while the 75th and 90th percentiles increase more dramatically, pointing to the
asymmetry in the evolution of cross-sectional distribution of individual uncertainty.
Moreover, for most respondents, 5-year uncertainty is greater than 1-year uncer-

tainty, but a sizeable minority have an inverted term structure: 28% for inflation, 24%
for growth, and 15% for unemployment. Other evidence of heterogeneity in the term
structure of uncertainty comes from estimating the linearity regressions, as in Ta-
ble 1, for each individual forecaster (for the 40 forecasters who provided at least 25
forecasts for each variable and horizon). In Table 5, we report summary statistics of
the regression coefficients across forecasters. There is considerable variation across
forecasters in how the longer-run uncertainty depends on shorter-run uncertainty, as
shown by large standard deviations.
The level and term structure of uncertainty are persistent for individual forecasters

(see Table A4). Also note that both the mean level and the mean slope are correlated
across variables. That is, a forecaster with relatively high average inflation uncertainty
also has relatively high average growth and unemployment uncertainty. And a fore-
caster with a relatively wide term structure of uncertainty for inflation is also likely
to have a relatively wide term structure for growth and unemployment (Table A5).

11. Interestingly, Engelberg, Manski, and Williams (2009) find that U.S. SPF forecasters tend to
report point predictions that give a more favorable view of the economy than do their subjective
means/medians/modes from density forecasts.
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Fig 4. Distribution of Inflation Uncertainty across Forecasters over Time.

Notes: ECB SPF data. Interior line is the median, bottom and top of boxes are the 25th and 75th percentiles, and bottom
and top of lines are 10th and 90th percentiles of inflation uncertainty.

TABLE 5

Forecaster Heterogeneity in Term Structure of Uncertainty

Level Slope

Variable mean std. dev. mean std. dev.

Inflation 0.816 0.264 0.637 0.358
Growth 0.740 0.348 0.571 0.393
Unemployment 0.739 0.408 0.739 0.431

Notes: The table shows the mean and standard deviation of the regression coefficient estimates from a regression of 5-year log uncertainty
on 1-year log uncertainty (level) and the difference between 1- and 2-year log uncertainty (slope) estimated for each individual forecasters,
using the 40 forecasters who make at least 25 density forecasts for each variable at each horizon.

3. A MODEL OF EXPECTATION UPDATING

We adopt the framework of Baker, McElroy, and Sheng (2020) that features
Kalman filter updating and state-dependent information processing. We generalize
their framework by allowing for time-varying uncertainty in both the signal and the
noise and by studying multistep ahead forecasts and the associated uncertainty.
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3.1 Information Environment and Kalman Filter Updating

We set forth a framework that represents the internal oracular mechanism of an
agent, by which the observations are perceived by the agent as being composed of
latent signal and noise processes, each of whose parameters are agent-dependent—
but are known to the agent. The signal extractionmachinery—including process mod-
els, parameters, and extraction algorithms—are internal to the agent, whereas the data
inputs are external. Specifically, we suppose there are N agents tasked with forecast-
ing several periods ahead an m-dimensional stationary Markov signal process {πt},
which is perceived as coming through a publicly available channel that involves ob-
fuscating noise; the presence of noise is essential to explaining the last three stylized
facts, as we show below. Here the time index t is arbitrary, and would correspond to
quarterly indexing for the data considered in this paper. Each agent is attempting to
produce MSE optimal linear forecasts based on their own perception (or specifica-
tion) of the dynamics of the signal and noise processes; our framework is designed to
be a convenient proxy for their actual behavior. Thus, we suppose that the observation
process for agent i is

yt (i) = B(i)πt + ηt (i), (1)

where {ηt (i)} represents the observation noise for the ith agent, and the matrix B(i)
corresponds to the manifestation of the signal. As (1) represents the internal oracular
mechanism of agent i, the noise {ηt (i)} and the observation matrix B(i) can vary with
i. In essence, the agent-specific signal is B(i)πt , but taking B(i) equal to the identity
matrix means that the signal {πt} is common to all agents; in this case the agents may
disagree about how the signal is perceived (through their observation noise ηt (i)), but
they do agree as to how the signal is defined (namely, as πt). This assumption allows
us to isolate the impact of observation noise on interagent disagreement. Furthermore,
we assume that {ηt (i)} is serially uncorrelated, has a time-varying covariance matrix
�

η
t (i), and is independent across agents.
Given that the agent seeks to generate an MSE optimal linear forecast, it is nat-

ural to express updates to previous forecasts through the Kalman filter—this will
allow us to fluidly develop formulas expressing the term structure of uncertainty.
We first formulate each forecaster’s Kalman filtering process, taking the variances
�

η
t (i), the parameters governing {πt}, and the matrix B(i) as known—since these

quantities are merely proxies for the agent’s internal assessment of the market. In
other words, their internal framework includes a specification of both the models and
parameters—including the time-varying variances—but not the realizations of the
signal and noise processes. (In the end of this subsection, we discuss the impact of
shocks to signal and noise.)
Suppose there exists a matrix G such that πt = Gxt , where xt is a heteroskedastic

Markovian state vector with transition equation given by

xt = � xt−1 + εt (2)
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for t ≥ 1, with initial value x0. We assume the transition matrix � has eigenvalues
less than one in magnitude (this ensures the signal is stationary) and that the signal
innovations {εt} are uncorrelated with x0, so that εt is uncorrelated with xt−1 for t ≥
1. Each innovation’s covariance matrix is denoted �ε

t . Let H(i) = B(i)G, so that
combining (1) with πt = Gxt yields the observation equation

yt (i) = H(i) xt + ηt (i). (3)

Equations (3) and (2) describe the information structure in state space form. We pro-
pose a flexible heteroskedastic VAR(p) class for the signal, where p is taken suffi-
ciently large to approximate a generic signal. We can give {πt} this structure if we set
x′
t = [π ′

t , π
′
t−1, . . . , π

′
t−p+1] with G = [Im, 0, . . .] (and Im is the m-dimensional iden-

tity matrix), and define the transition matrix by

� =

⎡
⎢⎢⎢⎣

�1 �2 . . . �p

Im 0 . . . 0
...

. . .
...

...
0 . . . Im 0

⎤
⎥⎥⎥⎦.

If the agent considers only their own past information, then the h-step ahead forecast
of the state vector is defined (for h ≥ 1) via

x̂t+h|t (i) = E[xt+h|y1(i), . . . , yt (i)],

and its mean square error matrix is Pt+h|t (i) = Cov[xt+h − x̂t+h|t (i)]. (Note that the
dependence on agent i enters not only through the agent-dependent forecast x̂t+h|t (i),
but also through models and parameters of xt that are agent-dependent.) The Kalman
filter updating for 1 ≤ t ≤ T is standard in the literature and, for brevity, is omitted
here; however, we note that the Kalman gain Kt (i) depends on i through the observa-
tion matrix B(i). In order to obtain h-step ahead forecasts (h ≥ 1), we compute

π̂t+1|t+1−h(i) = G�h−1 x̂t+2−h|t+1−h(i), (4)

Var[π̂t+1|t+1−h(i) − πt+1] = GPt+1|t+1−h(i)G′, (5)

and the calculation of Pt+1|t+1−h(i) is further described below. So (4) provides an
optimal linear estimate of the forecasted signal, given the presence of noise with time-
varying variability.
Because the transition matrix � is assumed to have eigenvalues less than one in

magnitude, one should parameterize the VAR(p) matrix polynomial such that stabil-
ity is guaranteed, as described in Roy, McElroy, and Linton (2019). Both the signal
and noise covariance matrices �ε

t and �
η
t are parameterized as stochastic processes
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taking values in the space of symmetric positive definite matrices. For each �t , con-
sider the Cholesky decomposition �t = At �t A′

t , where At is unit lower triangular
and �t is diagonal. The diagonal entries of �t each follow an exponential random
walk, and At = exp{Ct} (i.e., At is the matrix exponential of Ct), where Ct is a lower
triangular with zeros on the diagonal. Each lower triangular element ofCt follows an
independent random walk. This framework can be tailored to the user’s specification
through the parameter settings, which determine the dispersion for the random walk
increments in the covariance matrix process.
A shock to the variability corresponds to a salient shift in the time-varying variance,

and can be modeled by increasing the value by using a multiplicative factor (merely
increasing the random walk innovation variances will not generate this behavior). In
particular, a temporary shock to the variance at some time index τ can be generated
by scaling the entries of a single �t by some a > 0, but without altering At or �t , so
that the effect is transitory:

�t = At �t A
′
t · (1 + a 1{t=τ }). (6)

This ensures that �τ has values multiplied by 1 + a, and is denoted as a temporary
shock; this is like an additive outlier modifying a stochastic process.
A permanent shock at some time index τ involves dilating �t in the same manner

as the temporary shock, but with the effect lasting for all times t ≥ τ :

�t = At �t A
′
t · (1 + a 1{t≥τ }). (7)

This is like a level shift outlier that modifies a stochastic process. Whereas a tempo-
rary shock represents a transient aberration in the process, a permanent shock corre-
sponds to a new state of affairs. Shocks to the variability in the signal process pertain
to perceived changes in the true state of the market, with lower values of �ε

t corre-
sponding to greater stability. Shocks to the variability in the noise process instead
correspond with reduced confidence in the agent’s assessment of the market’s true
state, as larger values of �

η
t indicate that the signal is buried under greater obscurity.

Hence, lower values of �
η
t correspond to a greater confidence in the agent’s ability

to infer the latent signal.

3.2 Multistep-Ahead Forecasting

The three key ingredients of our framework are: (i) multistep-ahead forecasting,
(ii) heteroskedastic signal and noise with shocks, and (iii) Kalman filter updating.
The ith agent (1 ≤ i ≤ N) observes the public data and makes the forecast through a
signal extraction process. Given the data {yt (i)} for 1 ≤ t ≤ T , for each agent i, we
obtain the h-step ahead forecast π̂t+1|t+1−h(i) from (4); calculation of the uncertainty
relies upon Pt+1|t+1−h(i) in (5), which is a special case of the multistep ahead error
covariance

R(i j)
k,	 (t ) = Cov

[
x̂t+1|t−k(i) − xt+1, x̂t+1|t−	( j) − xt+1

]
,
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that is, the covariance of forecast errors for the ith agent (k + 1 steps ahead) and the
jth agent (	 + 1 steps ahead). The following result provides a recursive algorithm
for computing these covariances, based upon recursions for the one-step ahead error
covariances:

Q(i j)
t+1|t = Cov[x̂t+1|t (i) − xt+1, x̂t+1|t ( j) − xt+1]

between agents i and j. Note that setting j = i and 	 = k = h− 1, we obtain
Pt+1|t+1−h(i) = R(ii)

h−1,h−1(t ), and furthermore Q(ii)
t+1|t = Pt+1|t (i).

Proposition 1. The covariance of one-step ahead prediction errors across agents,
Q(i j)
t+1|t , can be computed recursively by

Q(i j)
t+1|t = [� − Kt (i)H(i)]Q(i j)

t|t−1[� − Kt ( j)H( j)]′ + �ε
t

+1{i= j} Kt (i)�η
t (i)Kt ( j)

′, (8)

with the initialization Q(i j)
1|0 = Var[x1] for all i and j. The covariance of prediction

errors across forecast horizons and agents, R(i j)
k,	 (t ), can be computed if k ≤ 	 by

R(i j)
	,	 (t ) = �	 Q(i j)

t+1−	|t−	 �′	 +
	−1∑
n=0

�n �ε
t+1−n �′n

R(i j)
	−1,	(t ) = �	−1 (� − Kt+1−	(i)H(i))Q(i j)

t+1−	|t−	 �′	 +
	−1∑
n=0

�n �ε
t+1−n �′n

R(i j)
k,	 (t ) = �k

	−1∏
n=k

(� − Kt−n(i)H(i))Q(i j)
t+1−	|t−	 �′	

+
	−k∑
m=2

�k
	−m∏
n=k

(� − Kt−n(i)H(i))�ε �′	−m+1 +
k∑

n=0

�n �ε
t+1−n �′n,

where k ≤ 	 − 2 in the last case, and where the matrix products are computed with
the lowest index matrix first, and multiplying on the right by matrices of higher index.

Whereas (8) of Proposition 1 was proved in Baker, McElroy, and Sheng (2020) for
the case of a common public noise, it is extended here to the case where the noise
process can be different for the various agents—note that the last term is present only
if i = j, being zero otherwise.
If we have interest in some linear composite of economic agents’ results, say

π t+h|t =
N∑
i=1

wi π̂t+h|t (i) (9)



CAROLA BINDER, TUCKER S. MCELROY AND XUGUANG S. SHENG : 57

for given weights wi, then the corresponding target is
∑N

i=1 wi πt+h, which equals
πt+h when the weights sum to one. We call (9) the composite forecast.
Next, let the aggregate forecast uncertainty (of the state vector) be defined as

Ut+h|t =
N∑
i=1

wi Pt+h|t (i),

which represents an average (across agents) of the variability in h-step ahead fore-
casting of the state vector. We can derive an expression for forecast uncertainty that
is recursive in h, and reveals the term structure of uncertainty.

Proposition 2. The covariance of prediction errors across multiple agents at one
forecast horizon can be recursively computed via

R(i j)
k+h,k+h(t + k + h) = �h R(i j)

k,k (t + k)�′h +
h−1∑
n=0

�n G′ �ε
t+1+k+h−n G�′n.

Hence the aggregate forecast uncertainty satisfies for h > 1

Ut+h|t = �h−1Ut+1|t �′h−1 +
h−2∑
n=0

�n G′ �ε
t+h−n G�′n. (10)

Proofs of Propositions 1 and 2 are in the online appendix. A key outcome of (10) is
that the agent’s forecast uncertainty depends on future values �ε

t+h of the signal’s dy-
namics, which are subjectively determined by the agent—hence, future expectations
about uncertainty are directly linked to present perceptions regarding the oracular
mechanism’s structure and parameters. Of course, these perceptions may be internal-
ized, that is, formulated in a subconscious manner that precludes self-awareness of
the forecasting procedure. Much of the term structure of uncertainty can be under-
stood by examining the behavior of (10) for different values of the parameters—this
is discussed below, through the device of simulations.

3.3 Stylized Facts Explained by the Model

Here we aim to explain the stylized facts of Section 3 through Propositions 1 and
2, and in particular via equation (10).

1. Linearity of Term Structure of Uncertainty: When the signal variability is fairly
low (corresponding to a period of market stability), then the second term in
(10) has more relative impact onUt+h|t , and the term structure of uncertainty in-
creases as a sum over powers of �. Hence, when the eigenvalues of � are close
to unity—corresponding to a VAR(p) process that is close to nonstationarity—
the term structure of uncertainty takes on an increasingly linear pattern. This is
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most easily seen in a univariate AR(1) case, with homoskedastic signal, where
(10) reduces to (taking N = 1 for simplicity)

Ut+h|t = �2(h−1)Ut+1|t +
h−2∑
n=0

�2n �ε.

When SNR is high most of the MSEUt+1|t is driven by signal variability �ε , so
that the second summand dominates; in the limiting case that� = 1, uncertainty
is a linear function of h with slope �ε and intercept Ut+1|t . On the other hand,
as the SNR drops (i.e., the noise variability is increasing) then Ut+1|t increases
and the h-step ahead uncertainty is dominated by �2(h−1), which is not a linear
pattern for � ≈ 1.

2. The Difference between Long-run and Short-run Uncertainty is Procyclical: Al-
though uncertainty generally increases with horizon, when the market is unsta-
ble the increase is sharper at short horizons. This effect is more prominent when
the signal is perceived as being less persistent. When the noise variability is
also high, there is a low SNR, which gives relatively more impact toUt+1|t as is
apparent from (10). On the other hand, for less persistent processes the matrix
�h−1 will quickly be small (in matrix norm) for larger values of h. Hence, in the
low SNR regime, the net effect is a larger uncertainty at short forecast horizons
relative to longer horizons for less persistent signals; when the signal is more
persistent, the uncertainty is increased by a similar degree across horizons. Thus,
the procyclical behavior is not apparent for highly persistent signals.

3. Forecasters are Overconfident at all Horizons: Overconfidence can be modeled
as the agent having perceived a low noise variability; the state space frame-
work of this section represents an agent’s internal oracular mechanism, so they
may specify quantities (such as �

η
t (i)) as lower than is genuinely warranted by

the market. This misperception (or misspecification) lowers their forecast un-
certainty uniformly across horizons—as �

η
t only enters into the term Ut+1|t of

formula (10) forUt+h|t . If the noise variability were higher, the uncertainty would
be higher at all horizons.

4. Heterogeneity across Forecasters in the Term Structure of Uncertainty: Some
agents may have less uncertainty at longer horizons, and this arises in a situa-
tion where they believe that a current market instability condition will soon be
rectified, and good times will return. We can model this as associating an un-
stable market behavior for short-term forecasts, and stable market behavior for
long-term forecasts. That is, we letUt+h|t be determined by larger values of {�ε

t }
when h is small, and conversely when h is large we use smaller values of {�ε

t }.

The interplay between signal and noise that is metrized through SNR plays an
essential role in establishing the last three stylized facts; whereas a basic VAR model
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Fig 5. Simulated Term Structure of Uncertainty.

Notes: Simulated term structure of uncertainty of a typical agent for a stable market regime (i.e., low variability in the
signal process) with high signal-to-noise ratio. h = 4 (solid), h = 8 (dashed), h = 12 (long dash), h = 16 (dotted), and
h = 20 (dot-dash). Series 1 has high persistence (0.97), Series 2 has moderate persistence (0.90), and Series 3 has weaker
persistence (0.80).

alone can explain the linearity of term structure uncertainty, it cannot account for the
other empirically observed phenomena.

3.4 Simulation Evidence

We now provide simulation evidence for the above stylized facts, focusing on hori-
zons h = 4, 8, 12, 16, 20, which correspond to 1-year ahead through 5-year ahead
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Fig 6. Simulated Term Structure of Uncertainty after a Shock.

Notes: Simulated term structure of uncertainty of a typical agent for a stable market regime (i.e., low variability in the
signal process), initially with a high signal-to-noise ratio that becomes lower half-way through the sample (at time t = 50).
h = 4 (solid), h = 8 (dashed), h = 12 (long dash), h = 16 (dotted), and h = 20 (dot-dash). Series 1 has high persistence
(0.97), Series 2 has moderate persistence (0.90), and Series 3 has weaker persistence (0.80).

forecasts for annual data. For purposes of illustration, we consider a trivariate (m = 3)
VAR(1) with coefficient matrix given by

�1 =
⎡
⎣0.97 0.10 0.20
0.00 0.90 −0.20
0.00 0.00 0.80

⎤
⎦.

This matrix has eigenvalues 0.97, 0.90, and 0.80, and as a result the first series has
the highest persistency, followed by the second, and the third series has the lowest
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Fig 7. Simulated Heterogeneity in the Term Structure of Uncertainty.

Notes: Simulated term structure of uncertainty of a typical agent when low horizons (h = 4, 8, 12) correspond to an
unstable market regime (i.e., high variability in the signal process), but high horizons (h = 16, 20) correspond to a stable
market regime (i.e., low variability in the signal process). h = 4 (solid), h = 8 (dashed), h = 12 (long dash), h = 16
(dotted), and h = 20 (dot-dash). Series 1 has high persistence (0.97), Series 2 has moderate persistence (0.90), and Series
3 has weaker persistence (0.80).

persistency. The parameters of the data generating process are chosen for the purposes
of illustration, and so as to represent three series with differing levels of persistency—
in rough correspondence with unemployment (which is most persistent), followed by
inflation and GDP growth. We take B(i) to be the identity matrix.

The stable market regime corresponds to setting the innovation variance to 0.1 for
the Gaussian random variables driving both the exponential random walk �t and the
matrix exponential ofCt for the signal—the matrices�ε

t are stochastically generated.
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Fig 8. Overconfidence and Perceived Uncertainty: Simulation Evidence.

Notes: Term structure of uncertainty of a typical agent for a stablemarket regime (i.e., low variability in the signal process)
with low signal-to-noise ratio. h = 4 (solid), h = 8 (dashed), h = 12 (long dash), h = 16 (dotted), and h = 20 (dot-dash).
Series 1 has high persistence (0.97), Series 2 has moderate persistence (0.90), and Series 3 has weaker persistence (0.80).

An unstable market regime is generated by increasing each �ε
t ; this can be accom-

plished by the artifice of introducing a sustained signal shock at time t = 0, according
to the methods described in (6) and (7) with a = 9. The SNR is taken to be high by
default, which is accomplished by setting the noise innovation variance to 0.01. The
signal and noise processes were generated to length T = 100 with a burn-in period
of 500, and possibly with shocks according to the stylized facts we seek to illustrate.
We begin by demonstrating linearity: Figure 5 corresponds to a stable market

regime with a high SNR. The horizons are h = 4, 8, 12, 16, 20, which are given col-
ors and line types corresponding to those of Section 3 (the cases h = 4, 8, 20). Here
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the linear structure is visibly evident in the upper panel, where the persistency is
strongest, and to a lesser extent in the middle panel. For the lower panel, the persis-
tency is weak enough that there is no linear term structure. As the SNR is lowered
(i.e., noise variability decreases) the linear pattern begins to break down.
Next, we consider long-run versus short-run behavior, and the procyclical tenden-

cies. Consider Figure 6, which focuses on a stable market regime. Initially there is a
high SNR, but at time point 50 we introduce a sustained shock to the noise variabil-
ity, which lowers the SNR at subsequent times. The general effect is an increase to
forecast uncertainty, but note the difference between the upper and lower panels: in
the upper panel (highly persistent signal) uncertainty is affected similarly at all hori-
zons, whereas in the lower panel (less persistent signal) the long-horizon uncertainty
receives little impact while the shorter horizons (h = 4, 8) are increased. A similar
behavior occurs in an unstable market regime.
For the heterogeneity of forecasters, we set the signal variability to be higher (es-

sentially through the mechanism of a permanent shock at time t = 0) for horizons
h = 4, 8, 12, but use the lower value for signal variability when h = 16, 20. In Fig-
ure 7, we see that the regular ordering of uncertainty has been altered in each panel;
now the higher horizon uncertainty is actually lower than that of the lower hori-
zon forecasts.
We claimed above that overconfidence can be modeled through an artificially low

noise variability. Looking back at Figure 5, we see the uncertainty pattern for a sta-
ble market regime with high SNR (or a low noise variability). Suppose that this
corresponds to an artificially low noise variability, due to overconfidence; this is a
perceived uncertainty. Furthermore, suppose that the true market conditions indicate
a higher degree of noise variability (or lower SNR)—such a case is displayed in
Figure 8. In comparing the uncertainties for Figure 5 with those of Figure 8, we
see that (for all the panels) those of the former case are artificially low, reflecting
forecaster hubris.

4. CONCLUSION

It is well known that uncertainty rises in recessions and crises—it did so in theGreat
Recession, and is poised to do so again in 2020. Less known is that the term structure
of uncertainty also changes in recessions, becoming much narrower. We have con-
structed measures of individual forecasters’ subjective uncertainty at horizons rang-
ing from 1 to 5 years, using density forecasts from the ECB SPF, and documented
four stylized facts. First, the term structure of uncertainty is linear—uncertainty at the
1- and 2-year horizons can almost perfectly predict uncertainty at the 5-year horizon.
Second, the slope of the term structure of uncertainty is procyclical. Third, forecast-
ers are overconfident at all horizons in their forecasts for key macro variables, for ex-
ample, output growth, inflation, and unemployment. Fourth, forecasters substantially
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differ from each other in their term structure of uncertainty, and this heterogeneity
is persistent.
Guided by our stylized facts, we have built a model of expectations formation pro-

cess under an information structure with private and public channels of information.
Ourmodel is similar to Baker,McElroy, and Sheng (2020), which features Kalman fil-
ter updating and state-dependent information processing. They assume heteroskedas-
ticity in the public signal and study the one-period ahead point forecast only. In con-
trast, we allow for time-varying uncertainty in both the signal and the noise. When
the perceived noise variability is substantially lower than the actual noise variability,
agents lower their forecast uncertainty uniformly across horizons, resulting in over-
confidence. Most importantly, we generalize their framework by deriving the evolu-
tion of forecasts and the associated uncertainty across multiple horizons.
Our theory highlights the role of perceived persistence in understanding multistep

ahead expectations formation, since the linearity and procyclical slope of the term
structure cannot be explained by models of sticky information, classic noisy infor-
mation, or simple VAR. When agents perceive the signal as being very persistent,
the term structure of uncertainty takes a linear pattern, and following shocks, the un-
certainty is increased by a similar degree across horizons. For less persistent signals,
however, the uncertainty increases more at shorter horizons relative to longer hori-
zons, leading to a procyclical term structure. Future research is warranted in exploring
whether this perceived persistence in forming expectations, in addition to habit for-
mation and adjustment costs, is another source of macro-economic persistence.

APPENDIX A

TABLE A1

Variables Forecasted by the European Central Bank Survey of Professional Forecasters

Name Notation Description

Inflation π Year on year percentage change of the Harmonised Index
of Consumer Prices (HICP) published by Eurostat

Growth g Year on year percentage change of real GDP
based on ESA definition

Unemployment u Unemployment as percentage of labor force
based on Eurostat definition

Notes: For more information, see “ECB Survey of Professional Forecasters (SPF): Description of SPF Dataset.”
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Fig A1. Comparison of Point Forecasts and Density Forecast Means.

Notes: ECB SPF data, pooled across forecast dates. Density mean is estimated by maximum likelihood using generalized
beta distribution. π – inflation, g – growth, and u – unemployment.

TABLE A2

Survey Return Dates and Available Information

Quarter Return date Last π obs. Last g obs. Last u obs.

1 Late Jan/early Feb Dec Q3 Nov
2 Late April/early May March Q4 Feb
3 Late July/early Aug June Q1 May
4 Late Oct/early Nov Sep Q2 Aug

Notes: For more information, see “ECB Survey of Professional Forecasters (SPF): Description of SPF Dataset.”
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Fig A2. Time Series of Mean Squared Error.

Notes: ECB SPF data. Mean of the squared difference between forecast made at time t and realization in t + 1, t + 2, or
t + 5. Figure displays the centered 8-year moving average.
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Fig A3. Distribution of Growth Uncertainty across Forecasters over Time.

Notes: ECB SPF data. Interior line is the median, bottom and top of boxes are the 25th and 75th percentiles, and bottom
and top of lines are 10th and 90th percentiles of growth uncertainty.
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Notes: ECB SPF data. Interior line is the median, bottom and top of boxes are the 25th and 75th percentiles, and bottom
and top of lines are 10th and 90th percentiles of unemployment uncertainty.
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TABLE A3

Linearity of the Term Structure of Aggregate Uncertainty Pre- and Post-2008

(1) (2) (3) (4) (5) (6)
Inflation Inflation Growth Growth Unemp Unemp

1-year 0.85*** 0.85*** 0.64*** 0.73*** 1.03*** 0.86***
(0.10) (0.06) (0.11) (0.06) (0.21) (0.07)

2-yr minus 1-yr 1.00*** 0.95*** 0.30** 0.59*** 1.63*** 1.09***
(0.18) (0.28) (0.14) (0.19) (0.28) (0.21)

Constant −0.09 −0.11 −0.21 −0.11 0.34 0.11
(0.19) (0.08) (0.18) (0.08) (0.39) (0.11)

Observations 30 41 30 40 30 41
R2 0.76 0.78 0.50 0.67 0.74 0.82
Sample Pre Post Pre Post Pre Post

Notes: Robust, time-clustered standard errors in parentheses. Dependent variable is log uncertainty at 5-year horizon for indicated variable.
***p < 0.01, **p < 0.05, *p < 0.10. In columns (1), (3), and (5), time sample is 1999–2007. In columns (2), (4), and (6), time sample
is 2008–18.

TABLE A4

Persistence of Uncertainty and Term Structure

Inflation Growth Unemployment

(1) (2) (3) (4) (5) (6)
logU IncrTerm logU IncrTerm logU IncrTerm

L.logU 0.87*** 0.81*** 0.86***
(0.01) (0.02) (0.02)

L.IncrTerm 0.40*** 0.23*** 0.41***
(0.04) (0.04) (0.05)

Constant −0.19*** 0.44*** −0.25*** 0.58*** −0.20*** 0.50***
(0.03) (0.04) (0.03) (0.04) (0.04) (0.05)

Observations 2,826 1,996 2,725 1,913 2,537 1,750
R2 0.76 0.23 0.68 0.10 0.74 0.19

Notes: Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10. In columns (1), (3), and (5), dependent variable is log
uncertainty at the one-year horizon, for inflation, growth, and unemployment, respectively. In columns (2), (4), and (6), dependent variable is a
dummy variable indicating that uncertainty is higher at the 5-year horizon than at the 1-year horizon, for inflation, growth, and unemployment,
respectively. In each column, the independent variable is a one-quarter lag of the dependent variable.

TABLE A5

Correlation of Average Level and Slope of Term Structure across Variables

Levels
lnUg

i1 lnUu
i1

lnUπ
i1 0.96 0.88

lnUg
i1 0.86

Slopes
lnUg

i5 − lnUg
i1 lnUu

i5 − lnUu
i1

lnUπ
i5 − lnUπ

i1 0.74 0.35
lnUg

i5 − lnUg
i1 0.27

Notes: The table shows the correlation across variables of the mean level and slope of the term structure of uncertainty for the 40 forecasters
who made at least 25 forecasts of each variable and horizon.
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